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In ¯rearm identi¯cation, a ¯rearm examiner looks at a pair of ¯red bullets or cartridge cases

using a comparison microscope and determines from this visual analysis if they were both ¯red

from the same ¯rearm. In the particular case of ¯red bullets, the individual ¯rearm signature
takes the form of a striated pattern. Over the time, the ¯rearm examiner's community devel-

oped two distinct approaches for bullet identi¯cation: pattern matching and line counting. More

recently, the emergence of technology enabling the capture of surface topographies down to a

submicron depth resolution has been a catalyst for the ¯eld of computerized objective ballistic
identi¯cation. Objectiveness is achieved through the statistical analysis of various scores of

known matches and known nonmatches exhibit pair comparison, which in turn implies the

capture of large quantities of bullets and cartridge cases topographies. The main goal of this

study was to develop an objective identi¯cation method for bullets ¯red from conventionally
ri°ed barrels, and to test this method on public and proprietary bullet 3D image datasets

captured at di®erent lateral resolutions. Two newly developed bullet identi¯cation scores, the

Line Counting Score (LCS) and the Pattern Matching Score, computed on 3D topographies
yielded perfect match versus nonmatch separation for three di®erent sets used in the standard

Hamby–Brundage Test. A similar analysis performed using a larger, more-realistic set, enabled

us to de¯ne a discriminative line at a false match rate of 1/10 000 on a 2D plot that shows both

identi¯cation scores for matches and nonmatches. The LCS is shown to produce a better
sensitivity than the standard consecutive matching striae criteria for the more-realistic dataset.

A likelihood function was also computed from a linear combination of both scores, and a

conservative approach based on extreme value theory is proposed to extrapolate this function in

the score domain where nonmatch data are not available. This study also provides a better
understanding of the limitations of studies that involve very few ¯rearms.

Keywords : Forensic science; ¯rearm identi¯cation; bullet; topography measurements; consecutive

matching striae (CMS); false match rate; likelihood ratio.

†Corresponding author.

This is an Open Access article published by World Scienti¯c Publishing Company. It is distributed under
the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is

permitted, provided the original work is properly cited.

International Journal of Pattern Recognition
and Arti¯cial Intelligence

Vol. 33, No. 11 (2019) 1940021 (34 pages)

#.c The Author(s)

DOI: 10.1142/S0218001419400214

1940021-1

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

04
.1

56
.7

2.
34

 o
n 

04
/0

1/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

http://dx.doi.org/10.1142/S0218001419400214


1. Introduction

Firearm identi¯cation is a discipline of forensic science that involves determining if

¯red bullets or cartridge cases had a particular ¯rearm as a common source, by

analyzing the unique marks left on their surfaces during ¯ring. This discipline is often

referred to as ¯rearm ¯ngerprinting because it is analogous to the identi¯cation of

individual ¯ngerprints.

The fact that the interaction of a tool with a tooled surface produces, apart from

the desired e®ect of the tool, microscopic random marks on the tooled surface con-

stitutes the fundamental hypothesis that supports this discipline.2 For instance, the

various gun barrel manufacturing processes leave tiny marks inside the barrel that, in

turn, produce a unique microscopic stria pattern on the surfaces of bullets ¯red from

that ¯rearm. The uniqueness of the pattern is the consequence of the random nature

of the manufacturing marks left on the surfaces inside the ¯rearm.

Unfortunately, some random °aws or incidents during manufacturing, such as an

accidental dent on a tool edge, can impart unintended marks on several consecutively

manufactured parts of the ¯rearm. Some manufacturing processes, such as broaching

or metal injection molding, are also prone to producing marks that transfer over to

several tooled surfaces (Ref. 27, Chap. 3). These marks are not the result of random

processes occurring during the interaction of the tool with the tooled material, and

their traces left on bullets or cartridge cases should be identi¯ed as such during the

¯rearm identi¯cation process. However, it is impossible for a layperson to distinguish

random marks from subclass characteristics.a The ability to segregate speci¯c marks

from subclass characteristics constitutes one of the many successfully resolved

challenges of forensic ¯rearm identi¯cation.

In order to con¯rm the fundamental hypothesis that supports the discipline and

to validate the ¯rearm identi¯cation process, ¯rearm examiners have developed

several types of pro¯ciency tests. One of the most popular types consists of collecting

a group of consecutively manufactured barrels directly from the production line.

Several bullets are ¯red from each barrel and the associated bullets and cartridge

cases are carefully identi¯ed. Usually, the test set would consist of 20 pairs of known

matches (KMs) from 10 di®erent barrels and 10 to 15 unknowns that need to be

compared and associated with the correct barrel.

Many di®erent versions of this type of test, involving ¯red bullets or cartridge

cases, have been performed by thousands of ¯rearm examiners around the world with

extremely high levels of success.18,27 This high success rate constitutes a validation of

the random and unique nature of the marks left on ¯red bullets and cartridge cases.

Since the barrels were manufactured consecutively, it also validates the process

by which the ¯rearm examiners identify subclass characteristics among the truly

random marks and discard them from the identi¯cation process. In the community

of ¯rearm examiners, it is widely held that consecutively manufactured barrel

aSubclass characteristics is the name given to the nonrandom marks which are characteristics to a subset

of a particular class of ¯rearms.
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tests involve the most di±cult ¯rearm identi¯cation possible, and that their

successful completion guarantees the validity of all other, inherently easier, ¯rearm

identi¯cations.

The main instrument used for forensic ¯rearm identi¯cation is the comparison

microscope, invented by Goddard in the mid-1920s. It consists of two microscopes

connected by an optical bridge, which results in a split view window enabling two

separate objects to be viewed simultaneously. The observer does not have to rely on

memory when comparing two objects as he or she would have to do when using a

conventional microscope.

During training, a ¯rearm examiner spends thousands of hours using the compar-

ison microscope to observe patterns of numerous KM and known nonmatch (KNM)

pairs of ¯red bullets and cartridge cases. The training also demands the acquisition of

in-depth knowledge of various manufacturing processes and tooling used by di®erent

¯rearm manufacturers, along with the standard ¯rearm identi¯cation procedures de-

veloped by generations of ¯rearm examiners. Since manufacturing processes are always

evolving, and because new challenges continue to emerge, even a con¯rmed ¯rearm

examiner must undergo periodic training to improve and update his or her expertise.27

This model, whereby a trained expert states the origin of ballistic evidence based

on his or her experience, and observations using only a comparison microscope, has

served the judiciary and criminalistics communities quite well over the years.

However, this model has two drawbacks. First, although the model works well for

criminal cases in which a suspected ¯rearm is readily identi¯ed and can be analyzed

by a ¯rearm examiner, it is not appropriate in helping to solve cold cases, where the

police investigator does not have much information about the criminal shooting.

Second, even if the ¯rearm identi¯cation is based on scienti¯c grounds, the act

of identifying a ¯red bullet or cartridge case as being from a particular ¯rearm

by visually observing its striae or impressed patterns is subjective in nature.2 In

particular, it is not possible for the ¯rearm examiner, based on his or her knowledge

and experience, to objectively evaluate or compute the probability that two di®erent

¯rearms would produce a speci¯c random pattern that he or she believes to have

come from the same ¯rearm.

Since the mid-1990s, with the emergence of electronic imaging, several automated

ballistic identi¯cation systems (ABISs) were developed to automate ¯rearm identi-

¯cation. Their purpose was to help solve cold cases by comparing images of bullets or

cartridge cases, either from test ¯res from seized weapons or exhibits recovered from

crime scenes, with those stored in the databases of cold case information. The

systems output lists of the most-relevant matching candidates for a particular ex-

hibit and still rely on the expertise of ¯rearm examiner to con¯rm a potential match.

The early versions of the various ABISs relied on re°ectance (2D) imaging. Due to

the inherent specular nature of ballistic evidence, performance was limited by the

large image variability associated with relatively small di®erences on the object's

surface. This limitation was removed with the advent of 3D topographic imaging
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which is associated with a major leap in ABIS performance. Today, previously un-

known matches, later con¯rmed by a ¯rearm examiner, are routinely found by law

enforcement agencies in datasets of tens of thousands of ballistic exhibits.16

Unlike a re°ectance 2D image, which is highly dependent on the lighting geom-

etry, the 3D topographic image of a ballistic exhibit provides a true representation of

its surface. Over the last decade, e®orts have been made to develop ballistic iden-

ti¯cation methods using 3D topographic images with the objective of providing

reliable error rates or likelihood ratio (LR) with the comparison results.5,19,30,32,35

Several studies have been conducted using the aforementioned consecutively

manufactured barrel standard tests. The belief that these tests involve the most

di±cult ¯rearm identi¯cation problems possibly compensates for the small size of

their dataset (i.e. about 35 exhibits from 10 guns). Furthermore, for such small

dataset, there is often no overlap at all between the score distributions of the K and

KNM, making it di±cult to objectively evaluate error rates, which is the goal of these

studies. Most of the time, a standard distribution (a normal, binomial, or beta-

binomial distribution, depending on the nature of the comparison algorithm), would

be ¯t on the available score distributions. The distribution would then be extended

to score values that are arbitrarily far from its bulk.

The primary objective of this paper is to present an objective identi¯cation

method suitable for bullets ¯red from conventionally ri°ed barrelsb based on a

dataset that is larger than those used in other studies; we use standard consecutively

manufactured barrel sets to train the feature extraction used in our model. Objective

scores computed from the features are trained and validated with a proprietary

dataset consisting of 406 bullets ¯red from 136 pistols of di®erent makes and models

(all pistols share the same class characteristics of 9mm caliber with six lands and

grooves with right twist). The dataset is representative of the variability encountered

in the context of casework in a ballistic laboratory. We will also shed light on the

implicit hypothesis that the shape of the bulk of the empirical nonmatch score dis-

tribution function dictates the behavior of the distribution tail that is used for most

of the published error rates or LR evaluations. This paper is the ¯rst to apply

extreme statistics in this context. Furthermore, our proposed method constitutes a

combination of both large classes of objective identi¯cation methods for bullets:

pattern matching38 and line counting.12

The second objective is to propose a visual representation of the results of the

objective identi¯cation methods that can be easily interpreted by ¯rearm examiners.

However, the visual analysis of multi-dimensional feature vectors, like those used by

machine learning (ML) algorithms, is a well-known challenge in more than three

(and sometimes two) dimensions. We adopted the strict approach of de¯ning fea-

tures in a 2D space. With pattern matching and the consecutive matching striae

(CMS) method being two di®erent, but successful, viewpoints, it seemed reasonable

to adopt a pattern matching score (PMS) and a line counting score (LCS). By

bPolygonal and unri°ed bullets are excluded from this study.
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working with only two types of scores, ¯nding a match versus nonmatch discrimi-

native line or curve, associated with a pre-de¯ned false match rate (FMR), would be

feasible using visual inspection, without any support from the more abstract ML

machinery. Also, since the nature of the work performed by ¯rearm examiners is

visually oriented, we expect a better acceptability of such a method if valid con-

clusions can e®ectively be drawn from 2D score plots. While imposing a 2D feature

vector is a severe constraint, it can be relaxed by allowing each score to be a function

of several complementary measures.

The third objective of the paper is to show that the objective identi¯cation of ¯red

bullets is possible with ABISs such as IBISr TRAX-HD3DTM j BULLETTRAXTM,c

which usually capture images at a slightly lower lateral resolution than those cap-

tured with devices used in other studies. As it is necessary to validate any objective

identi¯cation methods on real, very large datasets, the usage of fully automated and

fast 3D topographic devices such as BULLETTRAX is mandatory. The topographic

measurements of a pristine bullet and of a bullet fragment (not used in this study)

are shown in Fig. 1.

The fourth objective is to develop a new line counting method. While line

extraction methods have been developed, published similarity measures based on line

counting12,19 have been tested on small datasets. Our new line counting measure is

tested on a realistic dataset, captured at a relevant resolution.

The ¯fth objective of this paper is to validate, or invalidate, the hypothesis

that consecutively manufactured barrel tests likely provide the most similar KNM

pairs. With access to a large set of bullets from ¯rearms of various brands, we will

be in the position to know how common, or uncommon, it is to ¯nd a random pair of

Fig. 1. Pristine and deformed bullets (left) with corresponding topographic measurements (right).

cBULLETTRAX is a bullet acquisition station developed by Ultra Electronics Forensic Technology Inc.,

specialized for the entry of bullet information onto an Integrated Ballistic Identi¯cation System (IBIS)

network.
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¯red bullets that show more similarities, according to our objective identi¯cation

score, than the best KNM pair from a consecutively manufactured bullet test.

The rest of this paper is structured as follows. Section 2 summarizes the previous

work regarding 3D approaches for bullets and objective identi¯cation in the context

of ballistic analysis. We describe our main strategy, and our pro¯le and line ex-

traction algorithms in Sec. 3. In Sec. 4, we list the four datasets used in this study,

de¯ne the PMS and the LCS, and explain the analysis of the FMR and the LR based

on scores in the PMS–LCS space.

2. Related Work

2.1. High resolution 3D imaging of bullets

Several research projects based on imaging and comparison algorithms for bullets have

been published over the last two decades. Some of them involved 2D imaging9,20–25,31;

others presented prototype systems based on the acquisition of 3D surface topography

but did not provide quantitative results from automated comparison algo-

rithms.6,15,33,37 In this section, we will concentrate on the relatively small set of studies

which involve bullet comparison algorithms from high resolution 3D data. Further-

more, we summarize two speci¯c studies on objective identi¯cation of cartridge cases.

The ¯rst 3D bullet studies were realized using systems that captured a series of

high resolution pro¯les along the circumference of bullets. De Kinder and Bonfanti14

used a laser pro¯lometer that performed more than 150 scans along the circumfer-

ence of the bullets in their study, thus generating 3D surfaces. Their test set consisted

of two groups of three bullets, ¯red by a Beretta 92S and a Mauser P08 pistols,

respectively. The authors had already performed the basic operations that would

appear in several subsequent studies in order to extract relevant microscopic infor-

mation: high pass ¯ltering that removes the form of the bullet, the selection of regions

of interest from the land impressions, and the computation of a feature vector for each

land impression by averaging several pre-aligned pro¯les. Their comparison method

was a standard correlation algorithm. The authors found that the results obtained were

consistent with the quantity and quality of marks present. They also established that a

vertical resolution better than 1 micron is required for automated 3D bullet analysis.

Bachrach4 presented the results generated by SCICLOPSTM, an automated

system which used confocal microscopy. The system captured ¯ve pro¯les along

the circumference of each bullet in the study, and the feature vector was de¯ned

as the mean of these, properly aligned, ¯ve pro¯les. The similarity score between

two bullets was quanti¯ed as the cross-correlation function (CCF) of their re-

spective feature vector. Because the results were based on only three ¯rearms,

the performance assessment of this 3D comparison algorithm was of course

preliminary. However, the gap between the KM and KNM score distributions

already demonstrated that high resolution 3D was a promising alternative to

2D imaging.

D. Roberge, A. Beauchamp & S. L�evesque

1940021-6

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

04
.1

56
.7

2.
34

 o
n 

04
/0

1/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Chu et al.11 presented an automated bullet signature identi¯cation based on

topography images using confocal microscopy. The authors selected two barrels for

each six ¯rearm brands and ¯red four bullets from each ¯rearm. A feature vector,

called a signature, was computed by ¯nding e®ective correlation areas and averaging

pre-aligned pro¯les in these areas. Each bullet was correlated against its three

matches and the four bullets ¯red from the other barrel in the pair from the same

manufacturer. The expected outcome was to ¯nd the three matches at the top of the

sorted list of seven scores for 48 lists. The correlation results showed a 9.3% higher

accuracy rate compared to conventional 2D imaging.

In Ref. 38, the input data were the high-resolution 3D topographic images from

one of the Hamby–Brundage Test sets,18 consisting of 35 bullets ¯red from 10 con-

secutively manufactured ri°ed Ruger P85 pistol barrels, grouped as 10 pairs of

known training bullets and 15 unknowns for comparison. The cylindrical form

component was removed with ¯ltering, and an edge detector was applied to estimate

the orientation of the marks and to identify areas with strong striae. The pro¯les in

those areas were properly aligned and averaged. Perfect separation of the match and

nonmatch empirical score distribution was achieved with the CCF.

The studies listed above were all based on pro¯le similarity measures. Chu et al.12

innovated by implementing a comparison algorithm based on CMS. The conven-

tional CMS method is a line counting method that is used by a ¯rearm examiner,

comparing either two physical bullets installed on a comparison microscope or

comparing two photographs of bullets. The ¯rearm examiner registers and manually

counts groups of CMS when comparing two striated toolmarks. This method is based

on empirical observations dating back to Biasotti.7 In 1997, Biasotti and Murdock8

stated their quantitative CMS method criteria for the objective con¯rmation of the

common source of toolmarks. For 3D toolmarks (which include striae on ¯red bul-

lets), there is an identi¯cation when \at least two di®erent groups of at least three

CMS appear in the same relative position, or one group of six CMS is in agreement in

an evidence toolmark compared to a test toolmark". In terms of CMS groups, these

criteria translate to a minimum of two groups of at least three lines, or a single group

of at least six lines.

Chu et al.12 also used a Hamby–Brundage Test set.18 Image processing techniques

were applied to create a mask of relevant points for stria detection and generation of

a representative pro¯le for each land impression. Peaks were then extracted from the

pro¯le. When comparing a pair of pro¯les, two peaks were said to match if they

satisfy some tolerance criteria based on the stria de¯nition parameters, and groups of

CMS were computed. The authors found that none of the known nonmatching land

impression pairs satis¯ed the CMS method criteria, while 48% of the known

matching land impression pairs did. Furthermore, the 10 known bullet match pairs

were objectively identi¯ed.d

dFor this particular set, each bullet contains six land impression toolmarks, yielding 36 land impression
pair comparisons when comparing two bullets. A single land impression pair comparison that satis¯es the

CMS criteria is su±cient to state that the two bullets were ¯red from the same ¯rearm.
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Hare et al.19 used random forests, a speci¯c ML algorithm, to successfully classify

a Hamby–Brundage Test set of bullets from the NIST Ballistics Toolmark Research

Database, a public high-resolution 3D ballistic database.28 The training data were a

set of 7D feature vectors, some elements of which were pro¯le similarity measures,

including the CCF, while others were based on line counting, like the CMS method.

In this original approach, the feature vectors for ML were not generated from the set

of individual pro¯les, but from the comparison of every pair of pro¯les. An advantage

of random forests compared to some other nonlinear ML algorithms is that they

provide an assessment of the importance of each type of input feature. The authors

found that the two most relevant features for classi¯cation of the matches and

nonmatches are the CCF and the total number of matching lines in a land impression

pair comparison. Interestingly, the consecutiveness of the lines, which is at the core

of the CMS method, has a much lower importance. Instead, it is the total number of

matching lines — regardless of their relative position or grouping — that matters

the most.

A characteristic that is shared by the aforementioned bullet studies is the small

number of ¯rearms considered in the analysis, generally 10 or less. Research on bullet

toolmarks has been hampered by the challenge of capturing the topography of the

bullets due to their approximate cylindrical and sometimes arbitrary shape; such

capturing requires advanced surface tracking methods coupled with image stitching

algorithms and controlled rotation and translation motors. Only two datasets, from

NIST, are currently available for public research, both composed of 35 bullets ¯red

from the same 10 guns. In this context, it is safe to say that, to date, there is no

standard bullet database that is representative of the variability observed in forensic

laboratories; the conclusions drawn from such datasets must be con¯rmed using

representative datasets.

2.2. Objective identi¯cation

Objective identi¯cation methods provide meaningful scores associated with a prob-

ability measure, yet to be determined, that can reinforce the legal admissibility of

expert conclusions. The most relevant probability measure for objective identi¯ca-

tion is the LR.1 In the context of forensic ¯rearm identi¯cation, the LR is the

probability of being a match divided by the probability of being a nonmatch, based

on a set of meaningful scores obtained from the comparison of a pair of toolmarks.

When computed from a single score s, the LR is the ratio of the match probability

density to the nonmatch probability density, given the score:

LRðsÞ ¼ fMatchðsÞ
fNonMatchðsÞ

; ð1Þ

where f is a probability density function (PDF).

When comparing two particular bullets (herein called the reference bullet and the

test bullet), the strict application of the LR de¯nition imposes severe constraints on
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the population used to build both statistical distributions. In particular, the match

score distribution must be the result of comparisons between the reference bullet and

a su±ciently large set of test bullets ¯red from the same gun as the reference bullet.e

For a study that involves only small groups of KMs (pairs, triplets), the match score

distribution of each ¯rearm cannot be used to draw statistically valid conclusions.

The remaining option is to study the typical behavior of the LR by combining all the

available reference bullet match scores from various ¯rearms into a single average

match score distribution (and doing so for the nonmatch scores). In practice, it is still

a challenge to build representative average match score distributions. For example,

the set of pairwise comparisons over a sample of 100 pairs of KMs generates nearly

20 000 nonmatch scores, but only 100 match scores.

A modest and conservative alternative is to adopt an FMR and de¯ne a boundary

that discriminates the matching and nonmatching regions in the score space in a way

that is consistent with this FMR, a methodology based solely on the nonmatch score

distribution. In the context of ¯rearm identi¯cation, the FMR is the probability that

two bullets (or cartridge cases) will be erroneously identi¯ed as having been ¯red

from the same ¯rearm. For an automated system that makes a binary decision

(match or nonmatch) based on a single score, the score space is 1D and the dis-

criminative boundary is a prede¯ned threshold t. Assuming that typical match scores

are higher than nonmatch scores, the FMR is the probability that a nonmatch

comparison yields a score that is higher than t, that is, the area of the nonmatch

distribution over score values that are higher than t:

FMRðtÞ ¼
Z 1

t

dx fNonMatchðxÞ ¼ 1� CNonMatchðtÞ; ð2Þ

where C is the nonmatch cumulative distribution function. A score that is higher

than t implies that the observed score is exceptional for a nonmatch pair but draws

no conclusion regarding its probability of being a match. The latter is the purpose of

the LR.

No LR based on 3D score distributions of bullets has been published so far.

However, this is a very active area of research for cartridge cases.30,32,35 Riva and

Champod32 developed an automated comparison system of cartridge cases based on

3D measurements of the breech face and ¯ring pin marks. Three scores were de¯ned

for each mark. Their analysis was based on a sample composed of three distinct

groups of cartridge cases ¯red from Sig Sauer 9mm ¯rearms: a dataset of 79 cartridge

cases ¯red by di®erent ¯rearms and two groups of 60 cartridge cases ¯red by two

particular ¯rearms. These last two groups were used to build distinct match score

distributions that characterized individual ¯rearm: nearly 1800 scores in each dis-

tribution, which is orders of magnitude larger than in any other studies. The 79

cartridge cases were also correlated against themselves, thus providing an empirical

eNote that when the ¯rearm is not available for both the reference bullet and the test bullets (for example,

when two bullets are recovered from distinct crime scenes, but there is no ¯rearm), there is no way to build

this distribution.
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nonmatch distribution. The author found that the two KM distributions were sig-

ni¯cantly di®erent thus demonstrating that every ¯rearm is characterized by its own

match score distribution. By approximating the score distributions with multivariate

normal, they computed a mean LR of the order of 1020 and 1023 for the two KM

populations.

Song35 applied NIST's recently developed Congruent Matching Cell (CMC)

method for image comparisons of breech face marks. The CMC method divides the

compared topography images into squared-shaped cells and the similarity score is the

number of cell pairs that meets similarity and congruency requirements. False pos-

itive and false negative error rates were computed by ¯tting a beta-binomial function

on the discrete empirical match and nonmatch distributions. They tested the method

on two datasets: 40 cartridge cases from 10 consecutively manufactured Ruger 9mm

pistols and 100 cartridge cases from 11 barrels. The empirical match and nonmatch

distributions did not overlap and extremely low error rates were found. By con-

verting the authors identi¯cation probability R1 into an LR, we ¯nd a corresponding

LR value as high as 1035 for the lower score extreme of the match distribution. This

implies even larger values in the bulk of this distribution. As the authors state, for

realistic databases, the overlap of the KM and KNM distributions can become sig-

ni¯cant and the error rates will likely increase signi¯cantly.

Current objective identi¯cation models predict LRs larger than 1020, which is

orders of magnitude larger than the number of ¯rearms in the world. Such high

numbers clearly support 3D imaging technologies and newly developed comparison

algorithms for automated ¯rearm identi¯cation. However, they also raise questions

about the methodologies involved when modeling empirical score distributions,

especially for small datasets. LRs are computed by ¯tting standard distributions

(univariate or multivariate normals, binomial, beta-binomials, etc.) and extrapo-

lating them beyond their valid regime.

Research on objective identi¯cation of bullets would bene¯t from a su±ciently

larger and realistic dataset, representative of the variability encountered in the

context of laboratory casework. Such dataset would also allow the use of extreme

statistics13 in order to compute matching probabilities associated with score values

far from the bulk of the empirical distributions.

3. Methods

3.1. Strategy

Our proposed method combines two comparison scores: one associated with pattern

matching and one related to line counting. We take advantage of the fact that stria

patterns can be reduced to a single dimension signal. Section 3.2 describes the steps

that convert a full 3D acquisition to a single depth pro¯le for each region of interest

of a bullet. This section also describes how these pro¯les are compared.
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In Sec. 3.3, we describe the method that is used to transform the depth pro¯les

into a binary signal representing the striae, along with the method that is used to

compare two such binary signals. Three di®erent line counting measures are de¯ned

for this comparison process. It is worth noting that all the parameters used to de¯ne a

line (or stria) were tuned on the three Hamby–Brundage Test sets described in more

detail in Sec. 4.1.

Because a bullet surface can be divided into several regions of interest, the

comparison between two bullets involves the comparison of several pairs of regions of

interest. Section 4.2 explains how a single score is computed from these multiple

comparisons.

Section 4.3 presents some aspects of the behavior of the CCF and CMS com-

parison methods using two di®erent topographic image resolutions. These observa-

tions govern the construction of the PMS and LCS, which are described in Secs. 4.4

and 4.5, respectively. These scores are constructed from the pattern matching and

line counting measures discussed in Sec. 3.

Sections 4.6 and 4.7 provide the FMR and LR calculations. The visual repre-

sentation of bullet comparisons is discussed in Sec. 4.8, with use cases from a stan-

dard dataset. We then show, in Sec. 4.9, how the method can be applied, with minor

modi¯cations, to deal with bullet fragments. In Sec. 4.10, we compare the behavior of

the score distribution of a standard dataset, made of bullets ¯red from consecutively

manufactured barrels, to that of the proprietary large dataset.

3.2. Pro¯le extraction and comparison

The process that we used to extract a pro¯le from our bullet 3D images is similar in

essence to some of those used in the previously published studies,12,19 the di®erence

being that the process starts with the topography of a 360� band for bullets captured

using BULLETTRAX. The bullet's local curvature is removed from the band,

yielding a roughness image. A straightening algorithm determines the dominant

orientation of the toolmarks and applies a geometric transformation to align them

perpendicularly to the direction of the band. Another algorithm automatically

detects the shoulders and splits the roughness image into individual land and groove

images (Fig. 2).f

Fig. 2. Image processing over a 360� band. Original roughness image (top); straightening operation

(bottom). Location of individual LEAs is shown in black segments.

fThese algorithms are proprietary to Ultra Electronics Forensic Technology.
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As shown in Fig. 3, the toolmarks do not always extend over the whole image. In

most cases, the majority of toolmarks are concentrated very near the base of the

bullet. The relevant areas for objective identi¯cation are automatically emphasized

using a binary mask based on a measure of local coherence and pro¯le representation

of the topography within the mask is computed. At this stage, the comparison

process is reduced to computing a similarity measure between such pro¯les (an

example of pro¯les is shown in Fig. 5).

Two similarity measures were evaluated. One is the global maximum of the CCF,

which has proven its usefulness for objective identi¯cation of bullet pro¯les11 and

cartridge case areas29,36,38:

CCF ¼ MAX�

1

N

X
i

Xi � �X

�X

� �
Yi�� � �Y

�Y

� � !
; ð3Þ

where N is the number of elements in the X and Y pro¯les, �X is the average, and

�X is the standard deviation of the X pro¯le (and similarly for the Y pro¯le). The

¯nal CCF score is the highest score among the set of CCF values computed over

several horizontal translations (�) of one vector with respect to the other.

The CCF is invariant under a global change of the (vertical) scale of any of the

two vectors. Other similarity measures are not scale invariant, and might then

complement the CCF. We selected the Absolute Normalized Di®erence (AND):

AND ¼ 1�
P

i jðXi � �XÞ � ðYi�� � �Y ÞjP
i jðXi � �XÞ þ ðYi�� � �Y Þj

; ð4Þ

where � is determined from the CCF measure. The AND yields +1 only when the

mean-corrected pro¯les are rigorously identical. A vanishing denominator is theo-

retically possible in this equation, but it was not encountered in practice.

3.3. Line extraction and comparison

In this study, we were interested in ¯nding a single score based on line counting that

would then be computed independently for peaks and valleys, and combined.

Fig. 3. Relevant areas for the pro¯le computation in a land impression. Original image (left); original

image mixed with the binary mask of valid areas (right).
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The de¯nition of the peak/valley of a pro¯le must be part of the training

process of the matching algorithm. Similar to Chu et al.,12 we de¯ned four

parameters for peaks: horizontal position, width, left height, and right height

(Fig. 4). The peak detection criteria based on these values were ¯ne-tuned from

the data in order to optimize objective identi¯cation performance. The valleys are

characterized by the same set of parameters, computed from the reversed pro¯le

(i.e. from the pro¯le that is the result of a re°ection of the original pro¯le across

the horizontal axis).

To our knowledge, it has been tacitly assumed that the manual line counting

methodology would provide comparable performance for objective identi¯cation

regardless of whether the location of peaks or valleys is used when matching pro¯les.

This might not be the case since two peaks can indeed coincide (within the required

tolerance for matching them) while neighboring valleys are misaligned, and vice

versa. Peaks and valleys thus provide complementary information, and the LCS to

be de¯ned must consider this fact. Hare et al.19 combined peaks and valleys into a

single line counting value. We used a slightly di®erent approach, by computing two

distinct LCSs, one for peaks and one for valleys.

Figure 5 summarizes the process of line counting for a reference bullet pro¯le and

a test bullet pro¯le. The ¯rst step in the line counting process (for peaks) is to align

the reference pro¯le and the test pro¯le according to the relative position found by

the pattern matching algorithm (CCF). Each pro¯le is then converted into an ide-

alized binary pro¯le. Binary operations (AND and OR) are then applied to the pair

of binary pro¯les, and a binary vector P (for position) is created, where values of 1

indicate matching lines and values of 0 indicate nonmatching lines which are present

in either one of the input pro¯les but not in both. The peak or valley shape of the

toolmarks is not used in the comparison process, only their location is used.

Line counting analysis is easily performed by reading the P vector from left

to right. A CMS group corresponds to a set of consecutive 1s that is interrupted

by a 0 on its right side or by the end of the vector. The whole comparison is

then summarized by the number of groups of di®erent lengths, such as, in the

Fig. 4. Parameters of a peak: horizontal position (Max), width, left height (HL), and right height (HR).
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above example: four single lines, three groups of 2 CMS, one group of three and one

group of six.

One possibility was to de¯ne a CMS score equal to the size of the largest CMS

group (for example, a CMS score of 6 is obtained from the P vector in Fig. 5).

However, no criterion based on this single score was found to be equivalent to the

Biasotti and Murdock8 criteria which are a combination of two conditions (two

groups of at least 3 CMS or one group of at least 6 CMS). A better choice was to

count the number of striae that belong to groups of at least three striae (i.e.

neglecting isolated matching lines and pairs of matching lines):

SCMS ¼
XNMAX

i¼3

igi; ð5Þ

where NMAX is the size of the largest CMS group and gi is the number of CMS groups

of length i. With this de¯nition, a single criterion (SCMS of 6 or higher) is equivalent

to the two Biasotti and Murdock criteria for objective identi¯cation. Some other

parameters, computed from the P vector, will be used in the next section. These are

the total number of matching striae, T (¼ 19 from the example in Fig. 5); the number

of consecutively matching pairs, T2 ð¼ 10Þ; the number of CMS groups, NG ð¼ 9Þ.
Results from the SCMS, T and T2 similarity measures are discussed in Sec. 4.5.

There is an important distinction to observe at this point. In regular CMS

analysis, lines are identi¯ed and counted on 2D images of the toolmark surface by a

¯rearm examiner trained in this particular technique. Line counting methods per-

formed by a computer, as described in Chu et al.12 and presented here, rely on a

linear pro¯le averaged over a 3D recording of the toolmark topography. The para-

meters that distinguish a valid line from noise are usually adjusted to optimize the

overall objective identi¯cation performance. Therefore, it is normal to observe some

di®erences in the CMS counts determined by a human observer and a computer, and

even those determined by di®erent computer programs.

Fig. 5. Peak detection and comparison, and generation of the P vector (bottom) from a reference bullet

pro¯le X and a test bullet pro¯le Y .
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4. Results and Discussion

4.1. Data

The optimal range in the lateral and depth resolution of the 3D images used for

automated objective identi¯cation is yet to be determined but, intuitively, a higher

resolution carries more information and should be preferred. This is critical for a fully

automated system, which requires advanced surface tracking methods coupled with

controlled rotation and translation motors in order to build the full 360� band of a

pristine bullet or the arbitrary shape of a fragment.

In practice, higher lateral resolution is obtained at the cost of a reduced ¯eld of

view, which translates into a need to capture a larger number of images, thus in-

creasing acquisition time. The resulting band is also narrower, which limits the area

available for ¯rearm identi¯cation. A larger number of images also raises the possi-

bility of errors caused by bullet manipulation and/or image stitching when the ac-

quisition process is manual. Furthermore, a smaller ¯eld of view negatively a®ects

the automated image acquisition and bullet-tracking processes, since the base of

some pristine bullets is far from being °at, and deformed bullets and fragments can

be much more di±cult to manage.

The data used in this study consisted of four di®erent sets of pristine bullets as

follows:

. Two di®erent Hamby–Brundage Test sets from the NIST public database28: Each

set corresponds to 10 pairs of bullets ¯red from consecutively manufactured barrels

and 15 unknowns. Both image sets consist of individual land impressions captured

using a 3D confocal microscope equipped with a 20� objective at 1.5625�m/pixel

resolution. One of these two sets has been used in the previous studies.12,19

. A third Hamby–Brundage Test set, captured using BULLETTRAX and the same

type of 3D confocal microscope, but equipped with a 10� objective at 3.125�m/

pixel resolution. Bullet images are 360� bands built by stitching together several

images that are captured by an automated surface tracking acquisition algorithm.

The physical bullets are distinct from those in the NIST database, but belong to

the same test (i.e. ¯red from the same set of barrels).

. The fourth set consisted of a dataset of pristine, copper jacketed, bullets from

di®erent ammunition manufacturers captured using BULLETTRAX. The 9mm

bullets of the dataset (six grooves, right twist) were ¯red from 136 ¯rearms

(from pairs to quintuples, for a total of 406 bullets) from di®erent ¯rearm man-

ufacturers that are representative of the population of hand guns in an urban US

environment (Table I).

Before any computations were performed, every KM pair of the fourth set was

inspected using a 3D virtual comparison microscope, and was labeled as visually

matching or not. In this study, we de¯ne the subjective visual matching criterion as a

minimum of two distinct land impression pair comparisons in a common phaseg

gThe concept of phase will be de¯ned in Sec. 3.1.
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where su±cient agreement is observed. The fraction of con¯rmed visually matching

pairs, called the Visual Matching Ratio (VMR) in this paper, is 55% for this dataset.

This dataset is therefore more representative of real casework than the Hamby–

Brundage Test sets, where every KM pair can be matched visually according to the

visual matching criterion mentioned above. The purpose of this labeling was to focus

on reasonably good matches when training the algorithms. In our opinion, there is no

point in trying to match bullets that cannot be matched visually.

Bachrach5 also concluded that a high percentage of barrels does not e®ectively

impart the individual characteristics left on the inside of the barrel during the

manufacturing processes onto ¯red bullets. In their ambitious study, they used the

SCICLOPSTM system to analyze bullets ¯red from nearly 80 di®erent barrels from 8

di®erent manufacturers. They determined that the barrel manufacturer is the most

dominant factor in both the individuality and classi¯cation performance of the

bullets ¯red from it. For example, bullets ¯red from Ruger, Beretta, and Smith &

Wesson barrels could be identi¯ed with very low probability of error, while at the

other extreme, ¯rearm identi¯cation from bullets ¯red from Hi-Point or SIG Sauer

barrels was very limited. The second dominant factor was the ammunition brand.

Furthermore, signi¯cant variations were observed on the quality of the individual

marks even within a given barrel model and using the same ammunition.

To our knowledge, the VMR is not considered in most studies. This might stem

from the fact that several ¯rearm identi¯cation tests, such as the Hamby–Brundage

Test used here, have a VMR ¼ 100%. Therefore, all KM pairs are conclusive mat-

ches. An example of good and bad matching pairs from our proprietary dataset is

shown in Fig. 6.

Fig. 6. Portion of a 360� band from three known matching bullets aligned at their common optimal

phase. The top two bands match visually within the areas indicated by the ellipses. The bottom band is a

KM but cannot be visually con¯rmed to match either of the other two.
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4.2. Bullet comparison score strategy

Each land of a ¯rearm barrel is like a unique tool, independent of the other lands,

leaving distinctive toolmarks, called land engraved areas (LEAs), on the ¯red bullet's

surface. The comparison of two pristine bullets showing N LEAs (i.e. not fragments)

leads to the possibility ofN 2 LEA-to-LEA comparisons. However, since the sequence

of the LEAs is ¯xed inside the barrel, these N 2 possibilities can be arranged into N

groups, called phases, of N LEA-to-LEA comparisons with consistent ordering.

Finding the correct phase, by considering either the phase with the best overall

LEA-to-LEA comparison or the phase which shows the best average agreement, is

usually the ¯rst step in bullet identi¯cation. Firearm examiners rely on pattern

matching techniques to conduct this step; the CMS method is being used only as a

quantitative measure of the pattern agreement after the two compared LEAs have

been properly aligned. In this study, the best average CCF value was used to ¯nd

the correct phase; the pro¯le alignment (i.e. the � value in Eq. (3)) that yielded the

CCF score for each LEA-to-LEA comparison was used for all line counting-type

scores.

What remained was the question of how many LEAs, or distinct toolmarks, must

be considered in the construction of an objective score for the bullet pair as a whole.

Our choice had to consider two elements: (i) ¯rearm examiners, in practice, rarely

draw ¯nal conclusions based only on one LEA-to-LEA comparison (they look for

similarities over the whole circumference of the bullet), and (ii) bullet fragments from

crime scenes can have missing LEAs. Consequently, developing a similarity measure

based on the comparison of all possible LEA-to-LEA comparisons at the best phase

from datasets of pristine bullets can be of no practical value for the objective iden-

ti¯cation of crime evidence.

As will be discussed as follows, the average of the best two LEA-to-LEA com-

parisons o®ers a good compromise. Therefore, for the new types of scores being

presented in this paper (i.e. the newly developed PMS and LCS), the score value

represents the average of the best two LEA-to-LEA comparisons within the selected

phase. The selection of the LEAs to be part of the score relies on the PMS values. The

LCS is computed for those LEA-to-LEA comparisons with optimal alignment

obtained from the CCF. This best two-score approach is also consistent with our

visual matching criterion described earlier.

4.3. Behavior of the CCF and CMS on the Hamby–Brundage test sets

We began by evaluating the performance of the most common quantitative com-

parison measures, namely the CCF and the CMS, applied on the three Hamby–

Brundage sets.

For every pair of bullets, the representative CCF score was ¯rst computed as

the highest CCF value from the N LEA-to-LEA comparisons at the best phase.

Figure 7(top) shows the distribution of the match and nonmatch CCF scores for
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the three Hamby–Brundage Test sets in this scenario. The CCF unequivocally

discriminates the two classes: match and nonmatch. The gap between the match and

nonmatch score distributions, as measured by the Fisher ratio,h is 6.9 and 5.9 for the

two sets captured with a 20� objective. This gap is reduced slightly to 4.3 for the

set captured with a 10� objective, which already shows that pixel resolution

has some impact on the discriminative power of the CCF. Next, by rede¯ning the

representative CCF score as the average of the best two out of N LEA-to-LEA

comparisons at the best phase, the gap between both distributions improves

signi¯cantly (Fig. 7(bottom)). The Fisher ratio is now 9.1 and 6.8 for the 20� sets

and 4.7 for the 10� set.

As discussed previously, we have de¯ned the CMS score (SCMS) for a LEA-to-LEA

comparison as the number of striae that belongs to groups of at least three CMS.

Following the standard methodology for CMS, the representative score value of the

bullet pair comparison is the highest among the N CMS scores computed at the best

phase.

Since the computed CMS score is a function of several parameters (see Figs. 4 and 5

for peak de¯nition and alignment tolerance when creating the P vector), a systematic

search in the parameter space was ¯rst performed in order to ¯nd the combination

that optimizes performance in the three Hamby–Brundage Test sets. With the

optimal parameters for the de¯nition of a stria, the CMS method criteria (equivalent

to SCMS � 6) applied to peaks yield a 0% FMR for the three sets. The sensitivity of

the CMS method (i.e. the proportion of the KMs that satis¯es the criteria) varies

signi¯cantly over the three Hamby–Brundage Test sets: 100% for the two sets of

the NIST public database and 70% for the set captured using BULLETTRAX.

hThe de¯nition of the Fisher ratio used is the absolute di®erence of the averages divided by the sum of the

standard deviations.

Fig. 7. Distribution of the CCF for the three Hamby–Brundage sets: sets 1 and 2 at 20�, and set 3 at

10�, from left to right. Best LEA-to-LEA comparison from each bullet pair (top); average of the best two

LEA-to-LEA comparisons at the same phase from each bullet pair (bottom).
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This sensitivity is obtained for datasets that yield a 100% VMR and that show clear

class separation from pattern matching analysis.

Taken at face value, objective identi¯cation with CCF and CMS score distribu-

tions favors pixel resolution consistent with the 20� magni¯cation rather than 10�.

However, as discussed previously, improving the pixel resolution cannot be done

without signi¯cant costs in terms of image capture automation and duration,

stitching and manipulation accuracy, and usable width of the captured topography.

An alternative to selecting 20� magni¯cation is to focus research on quantitative

measures of similarity that better segregate matches and nonmatches than CCF for

data captured at 10� magni¯cation, and that show better sensitivity than the CMS

method for bullet pairs that can be visually matched. The next sections describe the

PMS and the LCS that have been developed to achieve this goal.

4.4. Pattern matching score

Our PMS is de¯ned as the combination of the CCF and the AND that optimizes the

separation between the match and nonmatch distributions for our large dataset

derived from a population of 136 ¯rearms of various makes and models. The repre-

sentative value of the CCF and the AND scores is computed as the respective av-

erage value over the LEAs that yield the two highest CCF scores at the best phase.

The score distribution of the visually con¯rmed matches lies along a straight line

that passes close to the origin (correlation coefficient ¼ 0:96) in the CCF–AND plane

while the nonmatch is nearly gaussian with signi¯cant variance along the direction

perpendicular to its main axis (Fig. 8). It is then natural to de¯ne the PMS as a linear

Fig. 8. 2D statistical distribution of the CCF and AND. Visually con¯rmed KM scores (large gray circles,

top right) and nonmatch scores (small black circles, bottom left).
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combination of the CCF and the AND, with their respective weight computed from

the eigenvector of the main principal component of the match distribution:

PMS ¼ w CCFþ ð1� wÞ AND; ð6Þ

where the weights add up to 1 to ensure that the upper bound of the PMS is þ1.

In practice, both weights are very close to 0.5.

4.5. Line Counting Score

Figure 9 shows the distributions of the SCMS, for peaks, and for visually con¯rmed

matching and nonmatching bullet pairs of our proprietary dataset. Consistent with

the published studies7,8,26 and algorithms,12 the FMR is very small with acceptance

of the CMS threshold at 6: 0.37% for CMSPEAK for 81 793 comparisons. However, the

sensitivity of the method is rather low, with only 58% of the visually con¯rmed

matches satisfying the CMS method criteria based on the SCMS.

However, results from Ref. 19 suggest that the total number of matching striae,

regardless of their consecutiveness, is the most useful line counting-type score for

objective bullet matching using a random forest algorithm. This score would then

simply be expressed as T , the sum of the binary elements in the P vector.

The 2D (peak and valley) visually con¯rmed match and nonmatch T distributions

strongly overlap, which makes T unsuited for objective identi¯cation in this dataset

(Fig. 10(left)). However, dividing T by NP , the number of elements in the P vector,

signi¯cantly reduces the overlap. This binary similarity measure is the Jaccard

Fig. 9. Statistical distribution of SCMS based on peaks for visually con¯rmed matches (white) and

nonmatches (gray). The CMS threshold is shown as a vertical dotted line.
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coe±cient,10 which always lies between 0 and 1. Figure 10 shows the distributions forffiffiffiffiffiffiffiffiffiffiffi
T=50

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T=NP

p
, again, the average of the best two matching LEA-to-LEA

comparisons at the best phase. A constant rescaling factor ð¼ 50Þ is applied to T in

this ¯gure to ensure that both measures can be shown on the same scale, thus helping

visual comparison. The square root is added for convenience in order to obtain a

threshold that segregates matches and nonmatches near 0.5.

Since the total number of striae does not consider the potentially positive con-

tribution from consecutiveness, we tested di®erent linear combinations of T and a

new term, T2, de¯ned as the number of consecutively matching pairs in the P vector

(i.e. the number of pairs of 1s). Similar to the individual striae used to compute T , the

pairs can be distributed anywhere in the P vector, that is, they may be CMS pairs or

parts of a larger CMS group. It was found that the quantity (T þ T2Þ=NP slightly

improves the compactness of the nonmatch distribution by shifting some outliers

toward the center of mass of the nonmatch distribution (Fig. 10(right)). Other

numerical experiments with similar contributions from larger series of consecutive 1s

in the P vector (T3;T4; . . .) did not improve the separation between matches and

nonmatches.

As a ¯nal re¯nement, we analyzed the nonmatching LEA-to-LEA comparisons

which yield score values (Peak or Valley) greater than 0.5; those are outsiders in

Fig. 10(right). Most of them were characterized by a small number of striae on both

LEAs, i.e. small NP , which makes them irrelevant for ¯rearm identi¯cation. We thus

applied a penalty multiplicative factor which reduces the score when NP is smaller

than some integer NMIN. The optimal value of NMIN was found to be equal to 6 by

experiment.

We adopted the following LCS for peaks and valleys:

LCS PEAK

VALLEY

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

T þ T2

N 0
P

� �s
PEAK

VALLEY

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

N 0
P

1� NG

2T

� �s
PEAK

VALLEY

; ð7Þ

Fig. 10. 2D statistical distributions of three types of LCSs for visually con¯rmed matches

(large gray circles) and nonmatches (small black circles). Square root of T=50 (left), T=NP (center),
and ðT þ T2Þ=2NP (right).
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where N 0
P � MaxðNP ;NMINÞ; the 1

2 factor yields an upper bound near unity and the

square root ensures that the threshold segregating matches and nonmatches is about

0.5; it can be shown that both mathematical expressions in (7) are equivalent from

the identity T2 ¼ T �NG. The rightmost one can be interpreted as the (square root)

product of two contributions: the normalized number of matching striae and a

correction term which penalizes a high number of CMS groups, NG, for a given T .

Following the same reasoning as for the PMS, the ¯nal LCS is de¯ned as a

weighted sum of contributions from peaks and valleys:

LCS ¼ 1

2
LCSPEAK þ 1

2
LCSVALLEY; ð8Þ

with equal weights in this case, as computed from the behavior of the visually con-

¯rmed match distribution (Fig. 10(right)).

When using an LCS threshold value that yields a similar FMR as with the regular

CMS method criteria (i.e. below 1%), this new LCS shows a much better sensitivity

of 93% (Fig. 11), compared to 58% for the CMS score (Fig. 9).

4.6. PMS and LCS: FMR

The PMS and the LCS were computed for every pair of bullets in the large propri-

etary dataset. Figure 12 shows the scores for all known matching and nonmatching

bullet pairs, that is, 422 match scores and 81 793 nonmatch scores, and for the subset

that includes only the 235 visually con¯rmed match pairs. The PMS and the LCS are

highly correlated for the visually con¯rmed known matching pairs, and follow a

straight line that passes close to the origin. The line that best ¯ts the match scores

distribution is found with PCA analysis.

Fig. 11. Statistical distribution of the LCS for visually con¯rmed matches (white) and nonmatches (gray).
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An FMR function is obtained by performing an orthogonal projection of the

nonmatch 2D scores on the best-¯tting line, in order to obtain a distribution of the

projected distance D between the projected points and a ¯xed point on the line. In

this process, we are in fact de¯ning a single score D that linearly combines the PMS

and the LCS. This score can be used to de¯ne an FMR as discussed as follows, but it

cannot be interpreted easily by ¯rearm examiners since it is the weighted sum of

contributions from pattern matching and line counting methods. We thus proposed

to keep the 2D representation for ease of interpretation, but used their linear com-

bination D for the computation of error rates. The D score match and nonmatch

probability densities are shown in Fig. 13.

The FMR associated with a given projected distance D is the area of the non-

match distribution for distances larger than D:

FMRðDÞ ¼
Z 1

D

dD 0fðD 0ÞNonMatch ¼ 1� CðDÞNonMatch; ð9Þ

Fig. 12. 2D statistical distributions of the PMS and LCS. All nonmatches and all matches (left); all
nonmatches and visually con¯rmed matches, with the best-¯tting line (right). The linear decision

boundary corresponds to an FMR of 1/10 000.

Fig. 13. Probability density of the nonmatch (dark gray) and match distributions (pale gray) for the

projected distance D. All match scores (left) and scores from visually con¯rmed match pairs only (right).
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where fðDÞ is the nonmatch distribution density of D, and CðDÞ is its cumulative. A

linear decision boundary corresponding to an FMR of 1/10 000 is shown in Fig. 12

(right). The corresponding sensitivity (i.e. the proportion of the visually con¯rmed

KMs that satisfy the criterion) is 98%. The sensitivity of the CCF alone at the same

FMR value is 89%.

As a reminder, these results were obtained by averaging the LCSs and PMSs over the

best two LEA-to-LEA comparisons. This analysis was repeated by considering only the

single best LEA-to-LEA comparison. Very similar results were obtained, with a slightly

lower sensitivity of 93%, thus supporting the choice of the two-score averaging process.

The computation of 95% error intervals of the FMR function was realized using

bootstrapping (Fig. 14). For each bootstrap iteration, the nonmatch and visually

con¯rmed match distributions were resampled with repetition; the weights of the

linear combination of the PMS and LCS was recalculated from the ¯rst principal

component of the bootstrap match distribution, and an FMR function was recom-

puted based on these weights and the bootstrap nonmatch distribution. For FMRs

smaller than 1/10 000, there is very little data from the nonmatch distribution; the

FMR is extrapolated based on the observed linear behavior of log10(FMR) in the

ð�4;�2Þ range, that is, from the highest 1% nonmatch scores (nearly 800 scores).

Bootstrapping was also used to determine a 95% interval for the extrapolated values.

ForD values larger than about 1, the error bar spans a range that is over one order of

magnitude. The extrapolation is discussed in the next section.

4.7. LR function and extrapolation of the nonmatch distribution

An LR function characterizing our larger dataset can be computed as the ratio of

the match and nonmatch probability densities of the projected distance score D.

Fig. 14. FMR function versus projected distance D with bootstrapped 95% error interval. The extrap-
olation is applied for log10ðFMRÞ < �4.
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ForD values of interest, the nonmatch distribution must be extrapolated beyond the

highest available score values. Visual inspection of Fig. 13 highly suggests that the

nonmatch distribution has a Gaussian shape; a reasonable approximation then seems

to ¯t a normal distribution over the whole set of nonmatch scores and use the

resulting analytical function for extrapolating over high scores.

However, a Gaussian shape is not consistent with the observed behavior of the

nonmatch cumulative distribution for high scores. As shown in Fig. 15, the right

wing of the nonmatch distribution and the Gaussian that best ¯ts the whole dis-

tribution diverges for 1% highest scores; the logarithm of the complementary cu-

mulative distribution 1� C (or, equivalently, of FMR(D), the FMR function of D)

becomes linear while the Gaussian function has an approximate quadratic asymp-

totic form.

An alternative to global ¯tting is to perform statistical modeling of the highest

scores of the experimental distribution, which is the object of extreme value theory.

For univariate distributions, four families of extreme value distributions are com-

monly used to model block maxima or right tails13: the Gumbel, the Fr�echet, the

(Reversed) Weibull and the generalized Pareto distributions. The observed linear

behavior of log(1� C) for large scores is consistent with modeling the wing of the

experimental distribution by an exponential distribution:

logeð1� CðxÞÞ ¼ � x� �

�
þ c ! P ðX < xjX > �Þ ¼ 1� e�

x��
� ; ð10Þ

where � is some prede¯ned threshold, and � and c are free parameters to be deter-

mined from a ¯tting procedure. The exponential distribution is a limiting case of the

generalized Pareto distribution:

GPDðx;�; �; �Þ ¼ 1� 1þ �
x� �

�

� �� ��1=�
; ð11Þ

Fig. 15. Extrapolation of the FMR function based on linear ¯tting (thin) over extreme scores and global

Gaussian ¯tting (thick). The experimental data (dark circles) and the Gaussian ¯t start to diverge for
log10ð1� CÞ near �2.
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in the limit where � converges to 0. Such a linear ¯tting yields the extrapolation of the

data presented in Figs. 14 and 15.

The LR function is computed by approximating the nonmatch distribution by

two analytical functions: the Gaussian ¯t forD values smaller than 0.55 and the PDF

associated with the linear extrapolation previously discussed, for larger D values.

The Parzen-window technique is used to smooth the match distribution and takes

the whole set of matches (including those that cannot be visually con¯rmed) into

account. The LR value corresponding to FMR ¼ 1=10 000 is 101.95 (� 90). Using

only the Gaussian ¯t would overestimate the LR of the visual matches by several

orders of magnitude (Fig. 16).

4.8. Use cases

The linear boundary with FMR ¼ 1=10 000 in the PMS-LCS plane and the LR(D)

function could be a valuable quantitative criterion in the context of pro¯ciency tests.

Figure 17 summarizes the output of the method on the PMS–LCS plane for two of

the 15 bullets considered as unknown in the Hamby–Brundage Test set captured at

10� (similar results are obtained from every bullet of this set). Each unknown bullet

is compared with 10 known matching pairs. The 20 score vectors are shown as black

dots, among which two are above the discriminative line; this pair and the tested

bullet are connected to the same barrel.17 All nonmatches are concentrated below the

line. The ¯gure also displays the empirical distribution of nonmatches and visually

con¯rmed matches from our dataset, to be used as a visual reference. Isolines of

(�log10) FMR and (log10) LRs computed from our dataset provide a quantitative

assessment of the similarity between the matches. The 30 LR values computed from

the projected distance D between each unknown and its best matching pair are 103

or greater (Fig. 18).

Fig. 16. LR function: linear extrapolation (thin), Gaussian ¯tting of the whole distribution (thick). The
D value corresponding to FMR ¼ 1=10 000 (0.66) is along the vertical dotted line.
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We also show the proposed methodology for a group of ¯ve visually con¯rmed

matches from our large dataset (Table 1). In Fig. 19, the ¯ve wrap-around images

can be compared. While the agreement between every pairs of bullets is excellent, it

is seen that bullet #5 (at the bottom) has a smaller number of well-matching striae.

Fig. 17. For two unknowns of a Hamby–Brundage set, scores against the set of 10 pairs of KMs (black)

superimposed on the score distributions of the large dataset (gray) and isolines of (�log10) FMR and

(log10) LR. The matching pairs stand out.

Fig. 18. For the 15 unknowns of the Hamby–Brundage Test set, LR values (logarithmic scale) against

their respective matching pairs of KMs superimposed on the LR function. The D value corresponding to
FMR ¼ 1=10 000 is along the vertical dotted line.

Table 1. Description of the fourth set of bullets.

KM Group Size Number of Firearms Number of Bullets

2 17 34

3 107 321
4 9 36

5 3 15

Total: 136 406
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The LR values of the four pairs where bullet #5 is involved are in the range of

104–106; the remaining six pairs have LR values over 1010 (Fig. 20).

4.9. Application of the presented method on bullet fragments

As discussed in Sec. 4.2, the presented method is based on a two-score approach for

which all computed scores (CCF, AND, LCSPEAK, LCSVALLEY) represent the average

of the best two LEA-to-LEA comparisons within the selected phase. This method is

obviously not directly applicable to bullet fragments with only one available land

impression because the average cannot be calculated.

Using a score computed from a single available land impression on a fragment (as

if it were the average of the best two values) would generate a biased result since the

statistical models in this study were built from experimental score distributions

based on the two-score approach. The solution, for this particular case, would be to

build a second PMS–LCS statistical model using the best score approach (which,

however, would yield a slightly lower sensitivity, as discussed in Sec. 4.6). The

probabilities associated with bullet fragments with only one land impression could

then be computed using this second model.

Fig. 19. High-resolution 3D roughness images for a matching quintuple.

Fig. 20. For the 10 possible pairs of a visually con¯rmed matching quintuple, LR values superimposed on
the LR function.
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4.10. The challenge of consecutively manufactured barrels

Consecutively manufactured barrels are sometimes described as the most chal-

lenging, or worst case, part of ballistic toolmark analysis.34 Such barrels sometimes

share common microscopic marks, called subclass characteristics, which are

transferred by the common tool that machined these barrels. In the 6th version of

the AFTE glossary, subclass characteristics are de¯ned as \features that may be

produced during manufacture that are consistent among items fabricated by the

same tool in the same approximate state of wear".3 It is possible that subclass

characteristics be erroneously interpreted as individual marks (i.e. characteristic of

a given barrel) by a ¯rearm examiner not trained on subclass characteristics, or by

an algorithm.

In the Hamby–Brundage Test, subclass characteristics were not an issue for 502

individuals who examined the bullets using a comparison microscope.18 This is

consistent with our score results. Figure 21 compares the match and nonmatch score

distributions computed from the 10 known pairs in our third set of images of a

Hamby–Brundage Test and the large proprietary dataset (both sets of images have

the same lateral resolution). The match scores of the Hamby–Brundage Test are all

above the discriminating line. More importantly, all nonmatch scores of this set are

below the line. Furthermore, several nonmatch scores of the proprietary dataset are

much nearer to the discriminating line than any nonmatch of the Hamby–Brundage

Test. According to the comparison algorithm, the Hamby–Brundage Test, while

being made of bullets ¯red from consecutively manufactured barrel, is less chal-

lenging than a realistic set with no consecutively made barrels. However, this test

still con¯rms the random nature of observed marks.

Fig. 21. For the 10 known pairs of a Hamby–Brundage set, match and nonmatch scores (black) super-

imposed on the score distributions of the large dataset (gray) and isolines of (�log10) FMR and (log10) LR.
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5. Conclusion

Using line counting and pattern matching methods, two new objective identi¯cation

scores have been developed based on high-resolution 3D topography for bullets ¯red

from conventionally ri°ed barrels. The PMS is a linear combination of the CCF and

the AND similarity measure; the LCS is the arithmetic average of a quantity cal-

culated separately for peaks and valleys, and is based on the normalized number of

matching striae and a correction term of order unity sensitive to consecutiveness.

The two scores, treated as a 2D feature vector, yield perfect match versus nonmatch

separation of the two standard Hamby–Brundage Test sets, and a third set captured

at twice this resolution.

A similar analysis done on a larger, more realistic, set captured with a lateral

resolution of 3.125�m per pixel, allowed us to de¯ne a discriminative line at the

FMR ¼ 1=10 000 level in a 2D plot that shows both objective identi¯cation scores for

matches and nonmatches. The proportion of the visually con¯rmed KMs that satisfy

the criterion (sensitivity) is 98%, which is larger than the corresponding proportion

with the CCF alone, 89%. The LCS alone is also found to have a better sensitivity

than CMS, 93% versus 58%.

The larger level of lateral resolution used in our study (3.125�m per pixel) pro-

vides su±cient information for the objective identi¯cation of bullets ¯red from

conventionally ri°ed barrels. This lateral resolution also inherently provides a larger

¯eld-of-view, which facilitates acquisition automation and visual analysis using a

virtual comparison microscope.

A linear combination of the PMS and the LCS yields a more abstract univariate

score, called the projected distance D. Its nonmatch probability density looks like a

perfect Gaussian distribution. However, its right wing diverges signi¯cantly from the

Gaussian behavior, and the highest 1% of scores better ¯t an exponential distribu-

tion, which is a special case of the generalized Pareto distributions used in extreme

value theory. This ¯tting was used to compute the LR for high D scores not sampled

by the experimental nonmatch distribution.

Any FMR or LR computed in the high score regime is evidently highly speculative

due to missing data from the nonmatch distribution. For extrapolations beyond the

nonmatch distribution, the huge di®erence between the prediction of the Gaussian

and exponential ¯ts emphasizes the importance of using large datasets. The expo-

nential ¯t was based on the highest 1% of more than 80 000 nonmatch scores, that is,

800 values, with a behavior that signi¯cantly di®ers from the asymptotic right wing

of the normal distribution. Conversely, this suggests that LR estimations, based on

analytic extrapolation PDFs ¯tted on an entire empirical distribution of a few

hundred KNM scores, are °awed.

The result of a bullet pair comparison can be displayed using a visualization tool

that shows the strength of the pair's PMS and LCS relative to the isolines of FMR

and LRs, with a discriminative line at FMR ¼ 1=10 000, and with representative

distributions of match and nonmatch score values.
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An analysis of Fig. 21 reveals that pairs of bullets ¯red from di®erent brands of

¯rearms can show better comparison scores than the best KNM scores obtained from

pairs of bullets from consecutively manufactured bullets of the Hamby–Brundage

Test set. Consequently, deriving LR estimations and objective identi¯cation methods

based on such limited datasets is misleading.

The consecutively manufactured barrels used for the construction of the Hamby–

Brundage Test sets do not show a signi¯cant quantity of subclass characteristics,

such as striae that extend over the whole barrel length and carry over to the next

manufactured barrel. It would be interesting to perform the same analysis on a set of

Ruger LC9 consecutively manufactured barrels, which are known to produce a high

quantity of subclass characteristics, to evaluate the robustness of the new scores

under such conditions and possibly develop strategies to overcome the in°uence of

these subclass characteristics.
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